If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+14t-2=0
a = 4.9; b = 14; c = -2;
Δ = b2-4ac
Δ = 142-4·4.9·(-2)
Δ = 235.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-\sqrt{235.2}}{2*4.9}=\frac{-14-\sqrt{235.2}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+\sqrt{235.2}}{2*4.9}=\frac{-14+\sqrt{235.2}}{9.8} $
| x-3/x+1=3/5 | | 5x-9=54 | | 15+12b=99-2b | | 15+12b=992b | | 5x-30=7x+10 | | 48=3x-6.6 | | 5x-3(10)=7x+10 | | 3x/4+4x=7/8+6x-6 | | 23p-22p+11p+3p+3=33 | | 3x-2x=48 | | 3(y-1)=y-11 | | x-7+2x+7+x=180 | | g-3=-8 | | -7=f+4 | | 2/4m-5-1/2m=1 | | 2x^-6=42 | | 9x-5=13x+11 | | (8x-5)=99 | | 18-(12a-12)=8a | | 15x+3=12x-15 | | 2y=37/6-25 | | 2a-2a+6a=18 | | -19j-20j+7j-3=13 | | 2d-2d+3D+2d+1=16 | | 15c-13c=14 | | X^2+250x-12500=0 | | 19z+-4z=-15 | | -8c-4c-5c=-17 | | 5g+2g+4g-10g=10 | | -20d+15d-2d-10d=17 | | 15k+2k-11k=12 | | 13s+3s-14s-2s+s=17 |